Inversion Effects in Humans and Deep Neural Networks

1 Department Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
3 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
4 Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
Psychologie & Gehirn 2023

Unraveling the enigma of inversion effects, this work taps into the power of deep neural networks to challenge our understanding of object recognition, questioning how category characteristics impact our perceptions and if neural networks are good predictors for human behavior.

Abstract

Deep neural networks match or exceed human performance in various visual tasks and serve as effective models for human behavior and neural processes. However, like humans, these networks are affected by input data variations, including contrast, blur, or orientation. In humans, the face inversion effect disproportionately impacts face recognition compared to objects. With deep neural networks modeling human face and object recognition, we aim to examine if this orientation bias applies across different object categories. This work seeks to explore if deep neural networks display inversion effects and can predict such effects in humans. Initial analyses with varied network architectures ranked object categories based on their inversion effects, then examined these in humans. In a classification task, both subjects and networks categorized objects presented upright or inverted. The results suggest neural networks show significant behavioral inversion effects across categories, regardless of model architecture. In humans, similar response patterns to the networks were observed even without significant differences in the inversion effects of selected objects. This underscores the relevance of neural networks in modeling human visual processing.

Methods

Methodological Approach: The study's methodology entails using deep neural networks for behavioral response analysis. The Ecoset dataset is selected, containing over 1.5 million images across 565 object categories. The models utilized are AlexNet, VGG-16, and ResNet-50, and the performance of each is measured using the Ecoset test dataset to calculate inversion effects per category.

Participant Selection: 45 participants were chosen, including 28 females and 17 males aged 18-38 years. They engaged in a 10-Way-Classification-Task, with a focus on accuracy and latency of object recognition. Three participants were excluded due to abnormal response patterns and reaction times.

Experimental Stimuli: The experimental stimuli consisted of images from ten categories in the Ecoset test dataset, chosen to represent varying inversion effects. These categories ranged from objects like cogwheels to dolphins. The ten categories were chosen for their consistent inversion scores across all three models.

Experimental Paradigm: A 10-Way-Classification-Task was conducted to study inversion effects in humans and deep neural networks. Each participant/network was shown 100 images in both upright and inverted orientations and had to identify the category of each image. This was done under specific conditions, including a short presentation time of 100 ms, to ensure comparable feedforward processing to neural networks.

Results


Deep Neural Networks




Humans




Humans vs. Deep Neural Networks




Main Finding

This thesis investigated inversion effects (recognition accuracy for images presented upside down versus right side up) in both humans and deep neural networks (DNNs). The findings suggest that DNNs do exhibit significant inversion effects, which are also reflected across different object categories. However, the architecture of the neural network does not impact the magnitude of this effect. In humans, no significant differences were found across object categories, but the response patterns between humans and DNNs showed strong similarities. Future research could focus on identifying which object properties amplify these inversion effects in neural networks, and then confirm these properties in humans. This could help further understand the origins of the face inversion effect, which is the greater difficulty people have in recognizing faces presented upside down compared to other objects.


Poster

References


Andina, D., Vega-Corona, A., Seijas, J. I., & Torres-Garcìa, J. (2007). Neural networks historical review. In Computational Intelligence (pp. 39-65). Springer, Boston, MA.
Ashworth III, A. R., Vuong, Q. C., Rossion, B., & Tarr, M. J. (2008). Recognizing rotated faces and Greebles: What properties drive the face inversion effect?. Visual Cognition,16(6), 754-784.
Baek, S., Song, M., Jang, J., Kim, G., & Paik, S. B. (2021). Face detection in untrained deep neural networks. Nature communications, 12(1), 1-15.
Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLoS computational biology, 14(12), e1006613.
Bartlett, J. C., & Searcy, J. (1993). Inversion and configuration of faces. Cognitive psychology, 25(3), 281-316.
Bejnordi, B. E., Veta, M., Van Diest, P. J., Van Ginneken, B., Karssemeijer, N., Litjens, G., ... & CAMELYON16 Consortium. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama, 318(22), 2199-2210.
Belanova, E., Davis, J. P., & Thompson, T. (2021). The part-whole effect in super-recognisers and typical-range-ability controls. Vision Research, 187, 75-84.
Berg, A. (2018). LeCun, Bengio and Hinton [Photograph]. Communications of the ACM. https://cacm.acm.org/magazines/2019/6/236990-neural-net-worth/abstract
Box, G. E. (1979). Robustness in the strategy of scientific model building. In Robustness in statistics (pp. 201-236). Academic Press.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Bruyer, R. (2011). Configural face processing: A meta-analytic survey. Perception, 40(12), 1478-1490.
Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. Behavior research methods, 42(1), 286-291.
Busigny, T., & Rossion, B. (2010). Acquired prosopagnosia abolishes the face inversion effect. Cortex, 46(8), 965-981.
Campbell, A., & Tanaka, J. W. (2018). Inversion impairs expert budgerigar identity recognition: a face-like effect for a nonface object of expertise. Perception, 47(6), 647-659. Inversion Effects in Humans and Deep Neural Networks 47
Chicco, D. (2021). Siamese neural networks: An overview. Artificial Neural Networks, 73-94.
Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in cognitive sciences, 23(4), 305-317.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ: Erlbaum.
Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29(8), 893-909.
Crookes, K., & McKone, E. (2009). Early maturity of face recognition: No childhood development of holistic processing, novel face encoding, or face-space. Cognition, 111(2), 219-247.
De Gelder, B., Bachoud-Lévi, A. C., & Degos, J. D. (1998). Inversion superiority in visual agnosia may be common to a variety of orientation polarised objects besides faces. Vision research, 38(18), 2855-2861.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255).
Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of experimental psychology: general, 115(2), 107.
Dodge, S., & Karam, L. (2017). A study and comparison of human and deep learning recognition performance under visual distortions. In 2017 26th international conference on computer communication and networks (ICCCN) (pp. 1-7). IEEE.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... &
Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Elmahmudi, A., & Ugail, H. (2019). Deep face recognition using imperfect facial data. Future Generation Computer Systems, 99, 213-225.
Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., & Madry, A. (2018). A rotation and a translation suffice: Fooling cnns with simple transformations.
Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect?. Journal of Experimental Psychology: Human perception and performance, 21(3), 628.
Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision research, 35(14), 2089-2093. Inversion Effects in Humans and Deep Neural Networks 48
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160.
Fawzi, A., & Frossard, P. (2015). Manitest: Are classifiers really invariant?. arXiv preprint arXiv:1507.06535.
Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2017). Detecting hip fractures with radiologist-level performance using deep neural networks. arXiv preprint arXiv:1711.06504.
Garrido, L., Susilo, T., Rezlescu, C., & Duchaine, B. (2019). Probing the Origins of the Face Inversion Effect With an Extraordinary Participant. Perception, 48(2).
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature neuroscience, 3(2), 191-197.
Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., & Wichmann, F. A. (2017). Comparing deep neural networks against humans: object recognition when the signal gets weaker. arXiv preprint arXiv:1706.06969.
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231.
Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. (2018). Generalisation in humans and deep neural networks. Advances in neural information processing systems, 31.
Ghodrati, M., Farzmahdi, A., Rajaei, K., Ebrahimpour, R., & Khaligh-Razavi, S. M. (2014).Feedforward object-vision models only tolerate small image variations compared tohuman. Frontiers in computational neuroscience, 8, 74.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio,Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544-549.
Hamm, J. P., & McMullen, P. A. (1998). Effects of orientation on the identification of rotated objects depend on the level of identity. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 413.
Haxby, J. V., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., & Martin, A. (1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22(1), 189-199. Inversion Effects in Humans and Deep Neural Networks 49
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). Hermann, K., Chen, T., & Kornblith, S. (2020). The origins and prevalence of texture bias in convolutional neural networks. Advances in Neural Information Processing Systems, 33, 19000-19015
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
Isik, L., Meyers, E. M., Leibo, J. Z., & Poggio, T. (2014). The dynamics of invariant object recognition in the human visual system. Journal of neurophysiology, 111(1), 91-102.
Jacob, G., Pramod, R. T., Katti, H., & Arun, S. P. (2021). Qualitative similarities and differences in visual object representations between brains and deep networks. Nature communications, 12(1), 1-14.
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1-2), 1-19.
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766-774.
Johnson, M. H. (2011). Face perception: A developmental perspective. The Oxford handbook of face perception, 3-14.
Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory & cognition, 13(4), 289-303.
Jozwik, K. M., Kriegeskorte, N., Storrs, K. R., & Mur, M. (2017). Deep convolutional neural networks outperform feature-based but not categorical models in explaining object similarity judgments. Frontiers in psychology, 8, 1726.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of neuroscience, 17(11), 4302-4311.
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition, 68(1), B1-B11.
Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., & Aila, T. (2021). Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34, 852-863.Inversion Effects in Humans and Deep Neural Networks 50
Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS computational biology, 10(11), e1003915.
Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., & Masquelier, T. (2016). Deep networks can resemble human feed-forward vision in invariant object recognition. Scientific reports, 6(1), 1-24.
Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2018). Deep neural networks in computational neuroscience. BioRxiv, 133504.
Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of experimental Psychology: general, 139(3), 558.
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 4.
Kriegeskorte, N. (2015). Deep neural networks: a new framework for modelling biological vision and brain information processing. biorxiv, 029876.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep neural networks as a computational model for human shape sensitivity. PLoS computational biology, 12(4), e1004896.
Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L., & DiCarlo, J. J. (2018). Cornet: Modeling the neural mechanisms of core object recognition. BioRxiv, 408385.
Lake, B. M., Zaremba, W., Fergus, R., & Gureckis, T. M. (2015, July). Deep Neural Networks Predict Category Typicality Ratings for Images. In CogSci.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Leder, H., & Carbon, C. C. (2006). Face‐specific configural processing of relational information. British Journal of Psychology, 97(1), 19-29.
Lee, K., Anzures, G., Quinn, P. C., Pascalis, O., & Slater, A. (2011). Development of face processing expertise. The Oxford handbook of face perception, 753-778.
Lewis, M. B., & Edmonds, A. J. (2003). Face detection: Mapping human performance. Perception, 32(8), 903-920.
Lewis, M. B. (2001). The Lady's not for turning: Rotation of the Thatcher illusion. Perception, 30(6), 769-774. Inversion Effects in Humans and Deep Neural Networks 51
Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: Past, present, and future. Journal of cognitive neuroscience, 33(10), 2017-2031.
Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: neural and behavioral correlates of face pareidolia. Cortex, 53, 60-77.
Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annual review of neuroscience, 19(1), 577-621.
Macchi Cassia, C., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns' face preference?. Psychological Science, 15(6), 379-383.
Macchi Cassia, V., Simion, F., & Umiltaà, C. (2001). Face preference at birth: the role of an orienting mechanism. Developmental Science, 4(1), 101-108.
Maheshwari, H. (2022). Performance degradation of ImageNet trained models by simple image transformations. arXiv preprint arXiv:2207.08079.
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in cognitive sciences, 6(6), 255-260.
Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., & Kietzmann, T. C. (2021). An ecologically motivated image dataset for deep learning yields better models of human vision. Proceedings of the National Academy of Sciences, 118(8), e2011417118.
Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39-41.
Murray, J. E., Yong, E., & Rhodes, G. (2000). Revisiting the perception of upside-down faces. Psychological Science, 11(6), 492-496.
Muttenthaler, L., & Hebart, M. N. (2021). THINGSvision: a Python toolbox for streamlining the extraction of activations from deep neural networks. Frontiers in neuroinformatics, 45.
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in cognitive sciences, 11(12), 520-527.
Palmer, S. E. (1999). Vision science: Photons to phenomenology. MIT press.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Grenet, M. (1995). Mother's face recognition by neonates: A replication and an extension. Infant Behavior and Development, 18(1), 79-85.
Perry, C. J., & Fallah, M. (2014). Feature integration and object representations along the dorsal stream visual hierarchy. Frontiers in computational neuroscience, 8, 84.
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2017). Adapting Deep Network Features to Capture Psychological Representations: An Abridged Report. In IJCAI (pp. 4934-4938). Inversion Effects in Humans and Deep Neural Networks 52
Piepers, D. W., & Robbins, R. A. (2012). A review and clarification of the terms “holistic,”“configural,” and “relational” in the face perception literature. Frontiers in psychology, 3, 559.
Praß, M., Grimsen, C., König, M., & Fahle, M. (2013). Ultra rapid object categorization: effects of level, animacy and context. PLoS One, 8(6), e68051.
Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., & DiCarlo, J. J. (2018). Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience, 38(33), 7255-7269
Rakover, S. S. (2013). Explaining the face-inversion effect: the face–scheme incompatibility (FSI) model. Psychonomic bulletin & review, 20(4), 665-692.
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125.
Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The body-inversion effect. Psychological science, 14(4), 302-308.
Rezlescu, C., Chapman, A., Susilo, T., & Caramazza, A. (2016). Large inversion effects are not specific to faces and do not vary with object expertise.
Rezlescu, C., Danaila, I., Miron, A., & Amariei, C. (2020). More time for science: Using Testable to create and share behavioral experiments faster, recruit better participants, and engage students in hands-on research. Progress in Brain Research, 253, 243-262.
Rhodes, G., Brake, S., & Atkinson, A. P. (1993). What's lost in inverted faces?. Cognition, 47(1), 25-57.
Rhodes, G., Brake, S., Taylor, K., & Tan, S. (1989). Expertise and configural coding in face recognition. British journal of psychology, 80(3), 313-331.
Rhodes, G. (1988). Looking at faces: First-order and second-order features as determinants of facial appearance. Perception, 17(1), 43-63.
Roads, B. D., & Love, B. C. (2021). Enriching imagenet with human similarity judgments and psychological embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3547-3557).
Robbins, R., & McKone, E. (2007). No face-like processing for objects-of-expertise in three behavioural tasks. Cognition, 103(1), 34-79.
Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., ... &
Vanduffel, W. (2012). Toward a unified theory of visual area V4. Neuron, 74(1), 12-29.
Rosch, E. (1978). Principles of categorization.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536. Inversion Effects in Humans and Deep Neural Networks 53
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252.
Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., ... & DiCarlo, J.J. (2020). Brain-score: Which artificial neural network for object recognition is most brain-like?. BioRxiv, 407007.
Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., & DiCarlo, J. J. (2020). Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron, 108(3), 413-423.
Searcy, J. H., & Bartlett, J. C. (1996). Inversion and processing of component and spatial–relational information in faces. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 904.
Shapiro, P. N., & Penrod, S. (1986). Meta-analysis of facial identification studies. Psychological bulletin, 100(2), 139.
Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. towards data science, 6(12), 310-316.
Simion, F., Di Giorgio, E., Leo, I., & Bardi, L. (2011). The processing of social stimuli in early infancy: from faces to biological motion perception. Progress in brain research, 189, 173-193.
Simion, F., Valenza, E., Umilta, C., & Barba, B. D. (1998). Preferential orienting to faces in newborns: A temporal–nasal asymmetry. Journal of Experimental Psychology: Human perception and performance, 24(5), 1399.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Slater, A., Von der Schulenburg, C., Brown, E., Badenoch, M., Butterworth, G., Parsons, S., & Samuels, C. (1998). Newborn infants prefer attractive faces. Infant Behavior and Development, 21(2), 345-354.
Storrs, K. R., & Kriegeskorte, N. (2019). Deep learning for cognitive neuroscience. arXiv preprint arXiv:1903.01458.
Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708).
Tanaka, J. W., & Gordon, I. (2011). Features, configuration, and holistic face processing. The Oxford handbook of face perception, 177-194.
Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face recognition. Memory & cognition, 25(5), 583-592. Inversion Effects in Humans and Deep Neural Networks 54
Tarr, M. J., & Gauthier, I. (2000). FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature neuroscience, 3(8), 764-769.
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. nature, 381(6582), 520-522.
Tian, F., Xie, H., Song, Y., Hu, S., & Liu, J. (2022). The Face Inversion Effect in Deep Convolutional Neural Networks. Frontiers in Computational Neuroscience, 16.
Turati, C., Sangrigoli, S., Ruely, J., & de Schonen, S. (2004). Evidence of the face inversion effect in 4‐month‐old infants. Infancy, 6(2), 275-297.
Valentine, T. (1988). Upside‐down faces: A review of the effect of inversion upon face recognition. British journal of psychology, 79(4), 471-491.
Van Dyck, L. E., Kwitt, R., Denzler, S. J., & Gruber, W. R. (2021). Comparing Object Recognition in Humans and Deep Convolutional Neural Networks—An Eye Tracking Study. Frontiers in Neuroscience, 15, 750639.
VanRullen, R. (2017). Perception science in the age of deep neural networks. Frontiers in psychology, 8, 142.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... & Van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-272.
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9(4), 611-629.
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature neuroscience, 19(3), 356-365.
Yan, X., Young, A. W., & Andrews, T. J. (2017). The automaticity of face perception is influenced by familiarity. Attention, Perception, & Psychophysics, 79(7), 2202-2211.
Yin, R. K. (1969). Looking at upside-down faces. Journal of experimental psychology, 81(1), 141.
Young, A. W., & Burton, A. M. (2018). Are we face experts?. Trends in cognitive sciences, 22(2), 100-110.
Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 42(11), 1166-1178.
Young, A. W., Hellawell, D., & Hay, D. C. (2013). Configurational information in face perception. Perception, 42(11), 1166-1178.
Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current biology, 15(24), 2256-2262. Inversion Effects in Humans and Deep Neural Networks 55
Yovel, G., Pelc, T., & Lubetzky, I. (2010). It's all in your head: why is the body inversion effect abolished for headless bodies?. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 759.
Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham
Zhang, M., Tseng, C., & Kreiman, G. (2020). Putting visual object recognition in context. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12985-12994)