Inversion Effects in Humans and Deep Neural Networks

Samuel Sander¹, Katharina Dobs^{2,3,4}

¹ Department Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

² Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

³ McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

⁴ Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.

Humans and Deep Neural Networks are prone to Inversion Effects

- Deep Neural Networks (DNNs) have achieved human-like performance in several \bullet visual perception tasks, including object classification, face verification, and medical image diagnosis. However, they exhibit sensitivity to variations in input data such as contrast, blur, or orientation.
- The "Inversion Effect" the decreased recognition performance for objects (and specifically faces) when presented in an inverted orientation – will be compared in DNN and Human responses. • **Goal:** Determine whether DNNs can predict the human inversion effect, identify the object properties that contribute to this effect, and assess the validity of DNNs as models for human object recognition [1] [2] [3] [4].

Results for Humans

Behavioral inversion Effects

Inversion Effect across Orientation

Inversion Effect across Object Categories

Zentralinstitut für Seelische Gesundheit

Methods

0.2 -U 0.1 onion eggplant broom artichoke lollypop weasel Upright Orientation

Humans vs. Deep Neural Networks

Results for Deep Neural Networks

Correlations for the Confusion Matrices of all Responses to Upright Images						
Confusion Matrix	1	2	3	4		
Human	-					
ResNet	.980***					
AlexNet	.974***	.967***				

Confusion Matrix	1	2	3	4
Human	-			
ResNet	.462***	-		
AlexNet	.173	.216*		
VGG-16	.470***	.666***	.385***	-

VGG-16 .978***

Vote. * indicates p < .05. *** indicates p < .001

Confusion Matrix	1	2	3	4
Human	-			
ResNet	.384***	-		
AlexNet	.344***	.216*		
VGG-16	.244*	.321**	.435***	

Note. *** indicates p < .001

Discussion

- Neural Networks exhibit behavioral Inversion Effect but no differences in activations of the units in the penultimate layer
- The architecture of the model does not significantly influence the size of the \bullet **Inversion Effect**
- Humans do not exhibit significant differences in Inversion Effect across Object Categories

Behavioral patterns between humans and neural networks regarding object classifications and Inversion Effects align

Literature

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [2] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708). [3] Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., & Wichmann, F. A. (2017). Comparing deep neural networks against humans: object recognition when the signal gets weaker. arXiv preprint arXiv:1706.06969 [4] Yin, R. K. (1969). Looking at upside-down faces. Journal of experimental psychology, 81(1), 141. [5] Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., & Kietzmann, T. C. (2021). An ecologically motivated image dataset for deep learning yields better models of human vision. Proceedings of the National Academy of Sciences, 118(8), e2011417118.

Contact samuel.sander@zi-mannheim.de